
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7628 http://www.webology.org

Dedupframe: Data Deduplication Framework For Effective

Management Of Cloud Storage

Dr.G.Uma

Assistant Professor Department of Computer Science Srimad Andavan Arts and Science

College-Trichy (Affiliated to Bharathidasan University)

Abstract

Cloud provides a virtual environment for storing a massive amount of data. Today’s scenario,

day by day, the size of data generation is increased. It needs a place to keep safe. Cloud is the

only solution to store an enormous volume of data. However, when storing data in the cloud, it is

a third party environment, and it can be used by different users all around the world. The place

should ensure the security or privacy of data stored in the cloud storage. When using

cryptographic techniques, the data are encrypted for maintaining security. Encryption produces a

ciphertext, which means encrypted data, and it is generated based on the key used for encryption.

So, it is understood that different keys could produce different ciphertexts for the same plaintext

or original text. Convergent encryption is used for avoiding duplicate data, but the key used for

the data for doing encryption at the first time is maintained and shared with all users who have

the same and similar content of data to upload to the cloud storage. Sharing the key to all the

users is critical in the open cloud environment. Users met many problems when using cloud

storage services. Cloud storage is allocated for storing the same data multiple times. It creates

difficulties in storage management. To address all these issues, it is necessary to propose an

efficient framework to maintain the data in the cloud without duplication. This proposes a

DEDUPFRAME for avoiding duplicated data stored in the cloud. the framework comprises

different components to maintain the data in the cloud. the research work is implemented in the

cloud environment and evaluated with test data. The result derived from the implementation is

satisfactory for avoiding duplicate data in the cloud storage.

Keywords:- Deduplication; Convergent Encryption; security; Framework; Cloud Storage;

Introduction

Cloud is an advanced computing-oriented technology, which provides computational resources

as a service. Most importantly, storage is the primary service provided by the cloud. Cloud offers

many services like SaaS, PaaS, and IaaS, whatever the users use these services, finally, they have

stored some data in the cloud. Moreover, the cloud is a public environment. Anyone can use

cloud storage through any cloud service. In this situation, there is a chance that the same data can

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7629 http://www.webology.org

be uploaded and stored by different independent users. To secure the data stored in the cloud,

uploading data are secured by using some traditional encryption techniques before they are

stored in the cloud [1]. Different users use conventional encryption with their key, and it

produces different encrypted data for the same original data. Each user’s encrypted data is stored

in the cloud in a different form. However, the content of the data is unique.

 In this scenario, the same data could store in the cloud storage multiple times, and storage

is allocated for the same data multiple times. It causes wastage of storage in the cloud. If it is for

a small amount of data, then it is not a matter, but the cloud is an unlimited storage service

provider. It is used by many enterprises and organizations to store their data in the cloud. In the

future, it is analyzed by the International Data Corporation (IDC) and delivered a report stating

that the usage of data in the world will increase to 40 trillion gigabytes by 2025 [2].

 Users met many problems when using cloud storage services. Cloud storage is allocated

for storing the same data multiple times. It creates difficulties in storage management. Cloud

allow duplicate data to store in the cloud storage. It creates unwanted storage allocation in the

cloud. The traditional cryptosystem is not suitable for maintaining non-duplicate data in the

cloud storage environment. Deduplication mechanism is vulnerable to many attacks like brute

force attack and dictionary attack, poison attack which includes duplicate faking attack and

erasure attack. Clients have more burden on maintaining the key for convergent encryption on

the client-side; it is more difficult for users. The convergent encryption key should be the same

for all users who have the same data, but sharing of this key to all the users of the data owner is

vulnerable to security attacks. To manage the data effectively in the cloud, it is essential to

minimize the duplicate storage of data in the cloud. To avoid duplication in cloud storage, it is

suggested to adopt a well-known methodology known as deduplication [3].

Deduplication supports in eradicating numerous replicas of similar data in cloud storage.

Deduplication is the only possibility to avoid duplicate data uploaded to the cloud. This paper

proposes a data deduplication framework to manage cloud storage without duplicate data

effectively. The framework designed for file-level data deduplication, and it is an online

deduplication framework, which means the data are verified for duplication before it is uploaded

to the cloud [4]. The process of deduplication allows only to keeps the file, which is uploaded

first by the user in the cloud, and for each following upload requests, it maintains a reference link

from the uploading data owner (DO) to the original copy of the file. Now the duplication is

avoided, and it saves storage space in the cloud, which could impact the economy of the business

[5]. Deduplication is supported by the convergent encryption technique, which enables the cloud

to store single copy data in the cloud [6]. The main objective of the paper is to design and

propose a framework for effective management of cloud storage and to eliminate the duplicate

copy of data in cloud storage. To provide the proper deduplication mechanism, it is necessary to

propose a Token and Tag generation method for verifying duplication of key and data in the

cloud storage.

Related Work

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7630 http://www.webology.org

Periasamy et al. [7] presented an enhanced secure content de-duplication identification and

prevention (ESCDIP) approach to improve the file-level and content-level de-duplication

discovery of coded data with consistency in the cloud environment. Every cloud user’s files

comprise an independent master key for encryption using the ESCDIP technique and outsourcing

them into the cloud. It shrinks the overheads that are connected with the collaborative

duplication detection and query processes. The method identifies the unique data chunking to

store in the cloud. The cloud user sets the size of the data chunk. Chunk is also denoted as

segments. Each segment is assigned with an identifier. The method identifies the duplicated data

through a comparison of the data segment identification, where only a copy of every repeated

part will be stored. At any cost, duplicated segments cannot be saved, and pointers are designed

for them. The technique improves storage efficiency and reduces backup costs. Based on the

result, this method deduced data uploading and downloading time and minimize communication

cost compared with other methods.

 Gayathri Devi et al. [8] concentrated on the result to overcome the difficulties initiated

due to substantially distributed pieces of data. Fragmentation can happen in the form of sparse

containers or containers that are not in order. Refurbish speed, and garbage collection efficiency

are compromised due to these containers. The disordered container triggers a debility in renovate

speed owing to the reduction in restoring cache. The idea of weakening destruction is showcased

by the proposal of the History-Aware Rewriting (HAR) algorithm. HAR practices some of the

past material of the backups that have happened to make out and reduce thin containers. The

hash code generation algorithm gives each of the chunks a unique hash code; for example,

Message Digest 5 (MD5). The logical chunk address is used to combine all the chunks and attain

the particular individual file. The encryption algorithm preferred to use is the Data Encryption

Standard (DES) to produce a crucial top-secret file is given to the requested user when the data

owner creates the user. Collectively using the algorithms mentioned above, the proposed system

aims to minimize fragmentation problems for the in-line deduplication system with a backup

storage. The volume of duplicate data will determine the quantity of the development of

refurbishing performance.

 Hemanth Chandra et al. [9] proposed the POD vs. IDedup deduplication technique. The

POD is a performance-oriented Deduplication scheme that can improve the performance of

primary storage systems in the Cloud by forcing data Deduplication on the I/O path to remove

redundant write requests while also saving storage space. POD minimizes the data fragmentation

problem by its process of considers a request-based selective Deduplication approach (Select-

Dedupe) to Deduplicating the I/O redundancy on the critical I/O path. In the meanwhile,

intelligent cache management (iCache) is employed in POD to improve read performance further

and increase space-saving. The paper evaluation shows that POD significantly enhances the

performance and save the capacity of primary storage systems in the Cloud. Latency-sensitive

and primary storage workloads are focused on inline deduplication system, and the latest

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7631 http://www.webology.org

techniques like POD are compared. Challenges of Latency sensitive workloads and Inline

Deduplication, large disk space needed for reading when implements fragmentation.

 Suzhen Wua et al. [10] proposed a Deduplication-Assisted primary storage system in

Cloud-of-Clouds (short for DAC). DAC removes the redundant data chunks in the cloud storage

location and distributes the data among several autonomous cloud storage providers by

manipulating the data reference characteristics. In DAC, the data chunks are deposited in various

providers by examining the repetition and eradication code patterns. To better development, the

benefits of both imitation and eradication code patterns and exploit the reference characteristics

in data deduplication, the great referenced data chunks are stored with the replication scheme

while the other data chunks are stored with the erasure code scheme. The experiments conducted

on a lightweight prototype implementation show that DAC improves the performance and cost-

efficiency significantly, compared with the existing methods.

 Frederik Armknecht et al. [11] proposed a ClearBox, which enables a cloud provider to

transparently attest to its client's deduplication patterns of their stored data. ClearBox

additionally enforces fine-grained access control over deduplicated files, supports data

confidentiality, and resists against malicious users. Evaluation results derived from a prototype

implementation of ClearBox show that the system scales correctly based on the number of files

in the system for the number of users. It is a full-fledge proposed system to verify the saving in

cloud storage by the user at any time. ClearBox motivates a novel cloud pricing model, which

promises a fairer allocation of storage costs amongst users—without compromising any data

confidentiality or system performance. It is believed that such a model provides strong incentives

for users to store accessible data in the cloud (since big data will be cheaper to store) and

discourages the upload of personal and unique content.

 Wen Xia et al. [12] presented an idea named SiLo with scalable deduplication, which

efficiently achieves the location of data streams to duplicate removal, throughput, and well stable

load at extremely low RAM overhead. The new system exposed and exploited more resemblance

by grouping toughly connected small files into a segment and also segmenting large files. The

system is to force the data stream location by consolidating the attached parts into blocks to

capture similar and duplicate data lost. SiLo parallelizes and distributes the data chunks to

multiple backend servers by implementing a locality-based stateless routing algorithm. SiLo

reduces RAM utilization for index-lookup because of carefully improving resemblance through

the exploitation of locality and vice versa. It also achieves the near-exact efficiency of duplicate

elimination and maintains a high deduplication throughput, and obtains load balance among

backup nodes.

 Fatema Rashid et al. [13] proposed a new privacy-preserving framework for

deduplication that addresses data privacy and security issue. The framework uses an efficient

deduplication algorithm to divide a given file into smaller units. These units are then encrypted

by the user using the combination of a secure hash function and a block encryption algorithm.

An index tree of hash values of these units is also generated and encrypted using an asymmetric

search encryption scheme by the user. This index tree is enabled the cloud service provider to

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7632 http://www.webology.org

search through the index and return the requested units. The framework allows CSPs to use

proposed techniques, and they cannot access either the users’ plaintexts or the users’ decryption

keys.

Methodology

The proposed framework is worked based on the sequence of steps. The framework consists of

three primary cloud services, Key generation, and Token maintenance as a Service (KTaaS),

Convergent Encryption as a Service (CEaaS), and Cloud Storage as a Service (CSaaS). This

section defines the steps to be followed to avoid the data duplications in cloud storage. Initially,

the data uploading request is created by the user for a specific data. First, a token is generated for

the data, and it is verified for the duplication of Token in the KTaaS. Second, a key is generated

for convergent encryption. This key generated based on the data of the user. It is an irreversible

hashing approach to generate the convergent encryption key. Third, data are encrypted using a

convergent encryption technique and with the convergent encryption key. Fourth, after

completion of data encryption, a tag is generated from the encrypted data. The created tag is

verified for duplication of data in the cloud storage. If it is not available, then the encrypted data

is upload to the cloud storage. Otherwise, a link is generated for the specific data and forward to

the user for further access concerning the authorization of the user. Figure 1 represents the

methodological diagram of the proposed framework.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7633 http://www.webology.org

Fig. 1 Methodological diagram of Proposed Framework

If data is already available in the cloud, then the same data is not allowed to store in the cloud by

any other user. If a user tries to upload the data with the same content which is already stored in

the cloud, then a link is generated for the data and assigned to the user instead to save another

duplicate copy of the same content.

A new link is
generated and
assigned to the

user

Token
Generation

KTaaS
Database

Tag is uploaded for duplicate check

Ye
s

User Data

KTaaS Generates key for generating
Convergent Encryption Key

Encrypt the data using Convergent
Key

Convergent Encryption key
generation

Digest the Encrypted data and generate a
Tag

Is Token
exist?

KTaaS

No

CEaaS

Verify
same data

user?

Yes

No

Verify Tag
for

duplicate
data?

KTaaS
Database

Generates

Secret Value

User Id &

Password

Process
Completed

To retrieve the data,
request is forwarded to
cloud with user_id and

Password

Store the data in Cloud Data link is
generated

No

Storage Cloud

Generates the Secret value at time of request and
verify it with stored secret value

Ok Not ok

User Access is permitted User Deny to access

Check
PoW

Yes

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7634 http://www.webology.org

Proposed DedupFrame System

The proposed framework consists of three cloud services for key and token generation and

maintenance, convergent encryption, cloud storage. The user’s data should be securely stored in

the cloud. Deduplication supports to avoid redundant copies of the same data stored in the cloud.

This thesis proposes a scheme with the introduction of KTaaS and CEaaS. KTaaS is the trusted

cloud service for generating a key for generating convergent encryption keys and tokens are

maintained in this cloud service. CEaaS is an independent, trusted cloud service provider for

convergent encryption. It uses a key that is generated from the data. The data is digested, and a

hash value is generated from the data, is known as encrypted data. Users should request this

service when they are ready to upload data to the cloud. Once the data is encrypted, then a tag is

generated from the encrypted data. Now, for duplicate checking, the tag is verified with already

stored tags in the KTaaS. If the tag is not available, then the data is uploaded to the cloud.

Otherwise, based on the user authentication, a link is created and assigned to the user. Figure 2

shows the proposed system framework with different cloud services.

Fig. 2 Proposed System Framework with different Cloud services

The three services in the proposed framework are independent can be provided by three different

cloud service providers. Each user wants to register with the system using their details, and the

user name and password are assigned for each user. Authenticated users only can access the

system. The working procedure of the proposed approach is explained in the following steps.

 Steps involved in the proposed framework process:-

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7635 http://www.webology.org

1.Initially, users want to upload data (UD) to the cloud; they must generate a token (TKN)

from the user’s data using TKN= Tkn_Gen(UD) primitive function.

2.The token TKN is forwarded to the KTaaS through a secure channel to get a key for

generating a convergent encryption key (CEK).

3.KTaaS verify the metadata whether TKN already exists in the database or not, if it already

exists in the database, then, KTaaS forward the corresponding key previously

generated for the same TKN to the user. If the TKN does not exist in the metadata, then,

KTaaS creates a key (GKCEK) for TKN send to the user. KTaaS maintain metadata for

each user TKN and its corresponding key details.

4.KTaaS forward the corresponding key GKCEK to the user for generating convergent

encryption key CEK.

5.Users generate the convergent encryption key using the proposed technique CEK =

CEkey_Gen(GKCEK) with the key GKCEK received from the KTaaS.

6.After the key generation, UD is ready to encrypt, a user requesting convergent encryption

from the CEaaS.

7.CEaaS provides environment for convergent encryption techniques ED=CEnc_Alg().

8.Users encrypt the data using CEK. After encryption, a Tag (TG) is generated from the

encrypted data (ED) using TG = Tag_Gen(ED) for verifying the duplication of data in

the cloud.

9.Users forward the TG to the cloud to check whether the data is already stored in the cloud

or not.

10. Cloud Storage providers verify the TG, which generated at the time of uploading with

TG’ which is taken from the cloud if it is available in the cloud. If TG==TG’s, then data

is already in the cloud storage. Now a link is generated for this user for the same data.

11. If TG != TG’ then the cloud system asked the user to forward the data ED.

12. Users forward the ED to CS, now deduplication is verified, and only one copy of data is

stored in the CS.

13. Uploaded data can be downloaded by verifying the proof of ownership in cloud

storage. Users have to submit their authentication details.

14. Cloud storage has a verifier to verify that the ownership of the user corresponds to the

data.

15. If the ownership of the user is proved, then data can be accessed by the users.

The proposed deduplication framework consists of separate cloud services for different services.

In the proposed procedure, initially, a token (TKN) is generated using the proposed token

generation method. After the generation of TKN, a key (GKCEK) is generated from KTaaS for the

generation of convergent encryption key (CEK), the proposed convergent encryption key

generation technique is described in [CE]. After the encryption, a tag (TG) is generated from the

encrypted data. Now the TG is verified for duplication. At the success of the TG verification, the

data either stored in the cloud or a link is generated for a new user when he/she tries to upload

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7636 http://www.webology.org

the same content of data. The correspondence of data and other generated values for uploading a

file are shown below,

UD→TKN→ GKCEK →CEK → ED → TG … (1)

 The formula shows the relations and correspondence of each data with a key and other

generated values produce for each file going to store in the cloud storage. The file is uploaded to

the cloud without duplication. The procedures for Token generation TKN, GKCEK, and Tag

generation TG are described in the following sections.

 After uploading the data, it can be downloaded based on the proof verification of the

user. By confirming the ownership of the data, the data can be accessed by the user. The file is

accessed based on the PoW. The PVAuth verifier authenticates the data owner using the

challenge-response method.

 For every file of data stored in the cloud, a secret value is assigned to each data file. The

secret value SVAL is generated by using Token, Tag of the file, user id, and password of the user.

Token and tag are involved in identifying the data, and user id and password are included for

determining the authorized user. This secret value is stored along with other details of the data. If

a user tries to access the data, the user submits their credential and mention that on which file

they need to access.

 SVALE[TKN||TG||Uid||Pwd] …(2)

 SVAL’ is stored value in the database at the time of uploading the data, where the proof is

verified by SVAL==SVAL’.

 The following sections describe Token generation, Key generation for generating CEK,

and Tag generation.

Token Generation

The proposed framework is described with the generation of Token, Tag, and Key. This section

explains how a Token is generated for the data which is uploaded to the cloud. The token is

generated for verifying the duplication of the key in the KTaaS. After a generation of a token, it

is mapped with the data in the KTaaS. Steps involved in the proposed token production are as

follows.

1. User data are converted into binaries

2. Find the size of the binary block. Check the total binary size is equal to the multiplied

value of 32. If not then add desired zero with user data

3. Divide the block into two and find the XOR of both blocks, repeat the step until the total

bits come to 32 bits.

4. Convert the bits into character code

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7637 http://www.webology.org

5. The character code is taken as the token for the users’ data

Experiment with Sample Data

 Users’ data (UD) = A cat has nine lives

 Knowledge is power

Step 1→ Find of the size of UD in N

 N sizeof(UD)

Step 2→ UD is converted into ASCII decimal code

 A65 c99 a97 t116 h104 a97 s115 n110 i105 n110 e101 l108

 i105 v118 e101 s115 K75 n110 o111 w119 l108 e101 d100

 g103 e101 i105 s115 p112 o111 w119 e101 r114

Step 3→Each ASCII decimal code is transformed into its equivalent binary code

6501000001 9901100011 97 01100001 11601110100 10401101000

9701100001 11501110011 11001101110 10501101001 11001101110

10101100101 10801101100 10501101001 11801110110 10101100101

11501110011 7501001011 11001101110 11101101111 11901110111

10801101100 10101100101 10001100100 10301100111 10101100101

10501101001 11501110011 11201110000 11101101111 11901110111

10101100101 11401110010

 Buff01000001 01100011 01100001 01110100 01101000 01100001 01110011 01101110

01101001 01101110 01100101 01101100 01101001 01110110 01100101 01110011 01001011

01101110 01101111 01110111 01101100 01100101 01100100 01100111 01100101 01101001

01110011 01110000 01101111 01110111 01100101 01110010

Step 4→Divide the block into two and find the XOR of both blocks, repeat step until the total

bits will come to 32 bits.

BLK101000001 01100011 01100001 01110100 01101000 01100001 01110011 01101110

01101001 01101110 01100101 01101100 01101001 01110110 01100101 01110011

BLK201001011 01101110 01101111 01110111 01101100 01100101 01100100 01100111

01100101 01101001 01110011 01110000 01101111 01110111 01100101 01110010

Find XOR,

01000001 01100011 01100001 01110100

01001011 01101110 01101111 01110111

00001010 00001101 00001110 00000011

01101000 01100001 01110011 01101110

01101100 01100101 01100100 01100111

00000100 00000100 00010111 00001001

01101001 01101110 01100101 01101100

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7638 http://www.webology.org

01100101 01101001 01110011 01110000

00001100 00000111 00010110 00011100

01101001 01110110 01100101 01110011

01101111 01110111 01100101 01110010

00000110 00000001 00000000 00000001

Round2 →00001010 00001101 00001110 00000011 00000100

00000100 00010111 00001001 00001100 00000111

 00010110 00011100 00000110 00000001 00000000

 00000001

Repeat the process by divide the block into two halves and find XOR.

BLK100001010 00001101 00001110 00000011 00000100

 00000100 00010111 00001001

BLK200001100 00000111 00010110 00011100 00000110

 00000001 00000000 00000001

00001010 00001101 00001110 00000011

00001100 00000111 00010110 00011100

00000110 00001010 00011000 00011111

00000100 00000100 00010111 00001001

00000110 00000001 00000000 00000001

00000010 00000101 00010111 00001000

Round3→ 00000110 00001010 00011000 00011111 00000010

 00000101 00010111 00001000

 BLK100000110 00001010 00011000 00011111

 BLK200000010 00000101 00010111 00001000

00000110 00001010 00011000 00011111

00000010 00000101 00010111 00001000

00000100 00001111 00001111 00010111

Block

00000100 00001111 00001111 00010111

Step5→Convert the bits into decimal code

400000100 1500001111 1500001111 2300010111

Step6→Convert the decimal into ASCII Character Code

Token TKN ♦☼☼↨

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7639 http://www.webology.org

Key Generation for CEK

The key generation is the process of finding a secret value for generating secret data or

transforming the data. This section describes a key generation approach. This key generation is

used to create a key GKCEK. This key is used to produce the convergent encryption key, which

used to encrypt the data using convergent encryption. It is a 128 bits key. It is generated in the

KTaaS if the token does not match with KTaaS database. Each GKCEK is corresponding with the

token TKN, and each TKN corresponds to a specific user’s data.

Steps involved in the generation of GKCEK:-

1. Keys are generated using the Random number generation.

2. This key is 128 bits key, 16 random values are generated

3. The 16 random decimal values are randomly chosen between 32 to 126

4. The 16 decimal values are converted into ASCII character code

5. The 16 character code is represented as GCEK, key for generating CEK

 This procedure is used to generate a key (GKCEK); this key is used to create the

convergent encryption key. GKCEK is a randomly generated key. It generates 16 random

numbers between 32 to 126 printable ASCII decimal value. This 16 character is considered as

the 128 bits key for generating convergent encryption key CEK.

Tag Generation from ED

The data are encrypted using CEK, and a tag is generated from the encrypted data ED. The

generation follows the below step to generate the tag TG from ED.

Steps involved in the generation if Tag:

1. Encrypted data is considered as input for tag generation

2. All encrypted codes are converted into corresponding decimal and converted into binary

values.

3. Find the size of the total bits.

4. Consider a single bit for 0 or 1 when they have occurred continuously for two times.

5. Divide the total block bits into two blocks

6. Consider 8 bits values of each block and find XOR of both blocks of each 8 bits

7. Repeat step 5 and 6 until whole bits comes under or equal to 64 bits.

8. The result of 8bits blocks are converted into ASCII character code

9. Final Character code derived from step 8 is a tag for the encrypted data.

Experiment with sample data

Tag is generated after the data are encrypted using the proposed convergent encryption. The tag

generation is based on encrypted data. The encrypted data is taken as input for tag generation.

The below step describes the tag generation for a sample encrypted data.

Consider the ciphertext,

 ED.↑ñb▲♫■ órL¿╛xp╝^╚∞╥>╤ë╕Æ╥♦Éµêp\

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7640 http://www.webology.org

Step 1→ Find of the size of ED in N

 N sizeof(ED)

Step 2→ ED is converted in to ASCII decimal code

46 24 164 98 30 14 254 32 162 114 76 168 190 120 112 188 94 200 236 210 62 209 137 184 146

210 4 144 230 136 112 92

Step 3→ Decimal ED is converted in to binaries

4600101110 2400011000 16410100100 9801100010 3000011110 1400001110

25411111110 3200100000 16210100010 11401110010 7601001100

16810101000 19010111110 12001111000 11200001110 18810111100

9401111010 20011001000 23611101100 21011010010 6200111110

20911010001 13710001001 18410111000 14610010010 21011010010

400000100 14410010000 23011100110 13610001000 11201110000 9201011100

Buff001011100001100010100100011000100001111000001110111111100010000010100010

011100100100110010101000101111100111100000001110101111000111101011001000111011

001101001000111110110100011000100110111000100100101101001000000100100100001110

0110100010000111000001011100

Step 4→ consider 1 bit of 0 or 1 when 0 or 1 is occurred continuously for two times.

Buff010110010010101001001001100011011110010001010010110101010101010010111001

100110010110010110101001101010101001110101001001010110010101010101000010101001

101010010011000101

Step 5→ Divide the total block bits into two blocks

Blk1→010110010010101001001001100011011110010001010010110101010101010010111001

100110010110

Blk2→010110101001101010101001110101001001010110010101010101000010101001101010

010011000101

Step 6→Consider 8bit values of each block and find XOR of both block of each 8bits

XOR Operation→Round 1

01011001 00101010 01001001 10001101

01011010 10011010 10101001 11010100

00000011 10110000 11100000 01011001

11100100 01010010 11010101 01010100

10010101 10010101 01010100 00101010

01110001 11000111 10000001 01111110

10111001 10011001 0110

01101010 01001100 0101

11010011 11010101 0011

If total bits length greater than 64 bits then repeat the step 5 and 6

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7641 http://www.webology.org

000000111011000011100000010110010111000111000111100000010111111011010011

110101010011

XOR Operation→Round 2

Divide the total block bits into two blocks

00000011 10110000 11100000

00011110 00000101 11111011

 00011101 10110101 00011011

01011001 01110001 00000011

01001111 01010100 00000011

00010110 00100101 00000000

Blk 00011101 10110101 00011011 00010110 00100101 00000000

Step 7→ The result of 8bits blocks are converted into ASCII character code

0001110129 10110101181 0001101127 0001011022

0010010137 000000000

Step 8→Final Character code derived from step 6 is a tag for the encrypted data.

29↔ 181╡ 27← 22▬ 37%

0[NUL]

 Tag TG ↔ ╡ ← ▬ % [NUL]

Implementation Setup and Results

The proposed research work is implemented in the cloud environment. The implementation setup

has a cloud server from Microsoft Azure. The configuration of the server is as follows, Windows

server 2008 micro instance with 30GB storage and 1GB RAM. The cloud-based application is

developed and hosted on the cloud server. The proposed application is developed in C#.NET

using visual studio 2012. The hosted cloud application is served as a cloud service which

consumed by all procedures proposed in the research work. Figure 3 shows the diagrammatical

representation of the implementation environment created for research work.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7642 http://www.webology.org

Fig. 3 Implementation Environment

Convergent encryption, Key generation and token management, convergent encryption key

generation and tag generation, and proof of ownership all these procedures are running in the

developed cloud-based application. For storing data, the Azure cloud server is used. From the

implementation, it shows that if the same content of the file is uploaded for the second time, then

it gives an error message that the file is already uploaded and please try another file. At the same

time, the data is not uploaded to the cloud storage. It proves that the proposed framework is not

allowed to upload duplicate data. Hence, it enables effective management of data in the cloud

storage.

 The efficiency of the proposed approach is measured by considering the computational

time caused by the proposed and existing methods. It can be calculated by the time taken by the

deduplication techniques for uploading data to the cloud. Calculation includes the processing of

all steps describes in the framework. A comparison of computational time considers the different

sizes of data.

 Table 1 and figure 4 shows the result from the comparison of proposed and existing

approaches concerning computational time. It illustrates that the proposed method has taken a

minimum computational time compared to other existing plans.

Table 1 Computational time caused by the Proposed and Existing Deduplication Techniques

Size MLE Dekey Dupless Dedup

5MB 143 173 148 130

10MB 268 301 275 250

15MB 391 427 401 377

20MB 512 546 519 498

25MB 601 639 613 589

Cloud Environment

Cloud Environment

Main Cloud service
(Asp. Net Application)

MS Azure Cloud

Azure Platform

Azure

Infrastructure

(Windows 2008 Server,

30GB, 1GB RAM, Micro

Instance Data base)

KTaaS

DB

ECaaS

User Side
Cloud Storage

PoW

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7643 http://www.webology.org

Fig. 4 Computational time caused by the Proposed and Existing Deduplication Techniques

 Table 2 and figure 5 shows the cloud storage allocation with deduplication and without

deduplication.

Table 2 Data storage allocation concerning with and without deduplication when two users

upload the same data file

Size
With Dedup

(MB)

Without Dedup

(MB)

5MB 5 10

10MB 10 20

15MB 15 30

20MB 20 40

25MB 25 50

Fig. 5 Data storage allocation concerning with and without deduplication when two users upload

the same data file

 If two users try to upload the same data file, how the cloud storage allocates the space in

the storage? By concerning with or without deduplication. The comparison shows that without

deduplication, allocates separate storage for each user’s file when the user uploads the data. In

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7644 http://www.webology.org

the case of deduplication, it allocates only a single storage allocation for all user’s data with the

same content in a file. It is observed that the proposed dedup framework can be more effective in

avoiding duplicate data storage allocation and managing cloud storage.

Conclusion

The aim and objective of the research work are to eliminate duplicate data in the cloud storage

before it is uploaded to the cloud. Elimination of duplicate data effectively helps to manage

cloud storage. The framework follows a sequence of steps for token generation, key for CEK

generation, convergent encryption key generation, convergent encryption, tag generation, and

proof of ownership verification. The overall research work mainly concentrates on proposing the

generation of a convergent encryption key and convergent encryption and proof of ownership.

All the proposals are incorporated in a framework and maintain effective cloud storage.

 Along with the above proposals, a Token and Tag generation method is also proposed in

this paper. Token and tag are generated from the user’s data file. The token is used to verify the

duplication of keys in the KTaaS. The tag is used to verify the duplicate files in the cloud

storage. All these procedures are for uploading the data to the cloud storage without duplication.

The framework also describes the procedure to download the file from the cloud. The user’s file

is downloaded or accessed based on the proof verification of the user’s authentication. The

framework allows only the verified users to access the files.

 The proposed research work is implemented in the cloud environment. A cloud-based

application is developed and hosted in the Windows Azure platform service. The developed

application runs for token generation, key generation, and convergent encryption and proof

verification. From the implementation results, it is proved that research work is implemented in

the cloud environment and also showed how it eliminates the duplication in cloud storage.

Reference

[1] MS.C.Kamatchi, R.Pooja, S.Serishma, R.Vanitha, Data Deduplication Security with

Dynamic Ownership Management, International Journal of Computer Science Trends and

Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017, pp.252-256.

[2] D. T. Meyer and W. J. Bolosky, “A Study of Practical Deduplication”, Trans Storage, vol.

7, no. 4, pp. 14:1–14:20, 2012.

[3] Nishant N. Pachpor and Prakash S. Prasad Securing the Data Deduplication to Improve the

Performance of Systems in the Cloud Infrastructure, Performance Management of

Integrated Systems and its Applications in Software Engineering, Asset Analytics, springer,

2020, pp.43-58

[4] Yukun Zhou, Dan Feng, Wen Xia, Min Fu, and Yu Xiao, DARM: A Deduplication-Aware

Redundancy Management Approach for Reliable-Enhanced Storage Systems, Springer

Nature Switzerland, ICA3PP, LNCS 11335, 2018, pp. 445–461.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7645 http://www.webology.org

[5] Sanjeet Kumar Nayak1 · Somanath Tripathy1, SEDS: secure and efficient server-aided

data deduplication scheme for cloud storage, International Journal of Information Security,

Springer, 2019, pp. 1-12

[6] K.Kanimozhi, N.Revathi, Secure Deduplication on Hybrid Cloud Storage with Key

Management, International Research Journal of Engineering and Technology, Volume 03,

Issue 06, 2016, pp. 2267- 2271.

[7] J. K. Periasamy and B. Latha, An enhanced secure content de-duplication identification and

prevention (ESCDIP) algorithm in cloud environment, January 2019Springer-Verlag

London Ltd., 2019, PP. 1-10.

[8] K. Gayathri Devi, S. Raksha and Kavitha Sooda, Enhancing Restore Speed of In-line

Deduplication Cloud-Based Backup, Systems by Minimizing Fragmentation, Smart

Intelligent Computing and Applications, Springer Nature Singapore Pte Ltd, 2020, pp. 9-

21.

[9] Hemanth Chandra N, Sahana D. Gowda, Secure and Efficient Client and Server Side Data

Deduplication to Reduce Storage in Remote Cloud Computing Systems , International e-

Journal For Technology And Research, Volume 1, Issue 5, May 2017, pp 1-8.

[10] Suzhen Wua, Kuan-Ching Li c, Bo Maob and Minghong Liao, DAC: Improving storage

availability with Deduplication-Assisted Cloud-of-Clouds, Elsevier Future Generation

Computer Systems, Volume 74, September 2017, pp. 190-198,

[11] Frederik Armknecht, Jens-Matthias Bohli, Ghassan O. Karame, and Franck Youssef,

Transparent Data Deduplication in the Cloud, ACM Conference on Computer and

Communications Security, ISBN: 978-1-4503-3832-5, 2015, pp. 886-900

[12] Wen Xia, Hong Jiang, Dan Feng and Yu Hua, Similarity and Locality Based Indexing for

High Performance Data Deduplication, IEEE Transactions on Computers, Vol. 64, No. 4,

April 2015, pp. 1162-1176.

[13] Fatema Rashid, Ali Miri, Isaac Woungang, A Secure Data Deduplication Framework for

Cloud Environments, IEEE International Conference on Privacy, Security and Trust, ISBN:

978-1-4673-2326-0/12, 2012, pp. 81-87.

